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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1487
EFFECT OF ASPECT RATIO AND TAPER ON THE
PRESSURE DRAG AT SUPERSONIC SPEEDS OF
UNSWEPT WINGS AT ZERO LIFT

By Jack N. Nielsen

SUMMARY

The linear theory for determining the pressure distribution at
supersonic speeds on wings of symmetrical section at zero lift has
been used to calculate the pressure drag coefficients at zero lift
of the famlily of unswept, untwisted wings with the diamond profile.
On the basls of the method of R. T. Jones, which was presented in
FACA TN No. 1107, a general expression has been found for the drag
coefficient at any supersonic Mach number, aspect ratio, and taper.
The general expression, which is too unwieldy for use ln analysis,
has been used in the construction of nondimensional charts permitting
a rapid estimation of the drag coefficient for a given wing at any.
Mach number. For wings of dlamond or rectangular plan form the
general expression reduces to simple formulas for the drag coeffi-—
cients. The nondimensional charts indicate that, at very low
agpect ratios, wings of dlamond plan form have the least drag and
that Increasing the ratio of tip chord to root chord increases
the drag markedly. However, at large aspect ratios rectangular
wings have the least drag end decreasing the ratio of tip chord
to root chord increases the drag slightly.

INTRODUCTICN

Methods for determining the aerodynamic characteristics of
various aircraft components at supersonic speeds have recently
become the subject of wldespread attention, Of particular interest
are methods which permit determination of wing characteristics in
three~dimensional flow, Substantial progress in the development
of a theory for the three-—dimensional supersonic wing has been
made by linearizing the problem on the basis of small perturbation
theory. This makes possible the use of the superposition principle
and ensbles separation of the pressures acting on an uncambered
wing into (1) a pressure distribution due to thiclkmess which
occurs at zero angle of attack plus (2) a pressure distribtuion due
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to angle of attack which occurs on a flat plate of the wing plan
form at the wing angle of attack. The pressure distribution due
to thiclness for thin symmetrical wings the surfaces of which are
formed by planes can be detexrmined by the method of R. T. Jones
(reference 1). Essentially the method consists of orienting
oblique line pressure sources and oblique line pressure sinks of
different strengths in a manner to satisfy the boundary conditlons
and then adding their pressure fields. An equivalent method has
been published by Puckett (reference 2).

Tho foregoing methods have been rather extensively applied to
wings of triangular plan form, but as yet only limited study of
the effucts of changing plen form by varying aspect ratlio, taper,
and aweop has been carried out. (Reference 3 is such a study.)
Accordingly in this report the method of Jones has been applied to
determining the pressure drag coefficient at zero lift of a family
of untwisted wings of diamond profile differing in aaspect ratio and
taper. For all wings the line of maximum thickness, that is, the
mid—chord line, is unswept. Tapers from zero to unity have been
oonsidered for all aspect ratlos.

SYMBOLS
A aspect ratio
8 semispan, feet
c root chord, feet

Cp ving pressure—~drag coefficient

M free—gtream Mach number

P local static pressure, pounds per square foot

Yo free-atrean static pressure, pounds per square foot

P Jreasure coefficient (p::o)

do free—strean dynamic pressure, pounds per square foot

S vwing area, sguare feet

) 7 meximm thickness of wing section at root chord, feet

% wing thickness ratio, fractiom of chord, approximately equal

to tangent of semivertex angle of wing section measured in
streamrise direction .
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A sweep angle of leading edge, radians

| polear angle measured from downstream direction, radians
o tan 6
T tan A

R.P. ©real part of a complex quantity

A wing taper, ratlio of tip chord to root chord
Subscripts ‘
a leading-edge sources
b midchord—line sinks
c trailing-edge sources
a leading-edge image sinks
] midchord—line image sources
ARALYSTS
Types of Wings

For the purpose of the anaslysis it has been convenient to
gubdivide the wings under conslderation into eight types as shown
in figure 1. From this figure 1t can be seen that certain relation-
ships between aspect ratio and taper define boundaries which determine
the wing type. Along boundary III the leading and trailing edges are
coincident with their respective Mach lines. Above this boundary the
leading and trailing edges are swept in front of the Mach lines
emenating from thelr foremost points and are termed supersonic leading
and trailing edges. Below this boundary the leading end trailing
edges are swept behind their respective Mach lines and ere termed
subsonic leading and trailing edges. This figure may be used for any

Mach number by using A./L?—:L, the effective zspect retio, in place
of the aspect ratio.

In wings of type 1, the Mech lines all Intersect the treiling
edges of the adjacent half wing. In wings of type 2, the Mach lines
from the extremities of the leading edges intersect the trailing
edges of the opposite half wing, and the Mech lines from the leading

‘a
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vertex intersect the wing tips at a point between the midchord line
and the trailing edge. The differences between wings of other types
can easily be seen in figure 1.

Determination of Wing Pressure Field

The wing pressure flield can be built up by superimposing a number
of simple pressure fielda which are basgically of two types. These
types of pressure flelds are those given by Jones in reference 1l for
e semi-inf'inite symmetricel wedge swept in front of or behind the Mach
Jine from its apex.

For & semi-infinite symmetrical wedge with a supersonic leading
edge (fig. 2(a)) the pressure field is conical and for M = 2 is
given by the following equation:

2 t/o —, tan A—tan6
P = R.P. cos (l)

%1 ~ tan® A |1 ~ tan A tan 6 |

Between the leading edge where & + A= X and the Mach line where
tan @ = 1 +this equation reduces to 2

2 t/c
1= tanZ A

which is the Ackeret equation, as given by reference kU, for the
pressure coefflcient based on the Mach number component perpendicular
to the leading edge. The pressure falls from this value at the Mach
line where tan 6 =1 to O at the Mach line where *an 6 = -1,

P=

For a somi—in;fini'l;.e symetricel wedge with a subsonic hdding
edge (fig. 2(b)) the conical pressure field is given by the following
equation:

tan A— tan 6
? = R.P. 2 b/c cosk* (2)
% oftan® A -1 |1~ tan A tan 6@ |

pressure coefficlent rises from zerc at the near Mach line where
= 1 +to infinity at the leading edge and falls again to zero at

The
ten @
the fexr Mach line where +tan 6 = -1,

ll’:;
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It 1s convenient to comslider the foregolng solutions for wedges
ag sources or sinks depending on whether they produce positive or
negative pressures. Thus when & flow is symmetricelly diverged as
by a wedge, the chenges in pressure are positive and can be considered
the result of a pressure source coincldent with the leading edge of
the wedge. When a flow is symmetricaelly converged, as when flowing
over the meximum thickness position of a diamond profile wing, the
changes in pressure are negative and can be considered the result of
& pressure sink lying along the midchord line,

The pressure fields of the sources and sinks which shape the
wing are added to glive the wing pressure field. From the leading
apex two sources are swept back along the leading edges to infinity
producing wedge boundaries along thelr entire extent (fig. 3(2)). To
confine these wedge boundaries to the finlte length of the leading
edges of the wing, two imege sinks of equal and opposlte magnitude
are superimposed onto the portions of thse sources lying off the wing
(rig. 3(b)), thereby producing in pert the effect of a tip. Two
gemi-infinite sinks are placed along the midchord line &t right
angles to the flow, and two immge sources are superimposed on those
portions of the sinks lying beyond the wing tips (fig. 3(¢)). The
two immge sources cambined with the two aforementioned image sinks
fully represent the effect of the tips. To return the flow at the
trailing edge to its original direction, two sources (fig. 3(&))
are started at the extremitles of the trailing edges and are extended
back along the trailing edges to infinity intersecting at the
tralling epex. The imeges of the trailing-edge sources cannot have
any contribution to the wing pressures and need not be considered.

Wing Drag Coefficient
The contrlbution to the wing pressure dreg of the pressure
field of each source and sink can be individually determined, and

the sum of the individusl pressure drags will then be the total
dreg. This mey be expressed in ccefficlent form as

= + + + +
Cp cDa. c’:Db ch ch. cDe (3)
where the symbols have the following meanings:
cDa drag coefficient associated with the leading-edge sources

Cp, drag coefficient assoclated with the mldchord—line sinke

cpc drag coefficient assoclated with the traliling-edge sources
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CDd. drag coefficient aamsociated with the leading-edge image sinks

Cp drag coefficient associated with the midchord—line imege
° sources ' _ o

The derivation of the drag coefficients is performed for a wing
of type 8, because the results for this wing type can be reduced to
include every other wing type as & special case. No loss of
generallity is incurred by restriocting the analysis to M2x= 2 as

will be subsequently explained.

The actual determinations of Cp,s; Cp,s, Cp,s Cpys and Cp,

are carried out in Appendix A. The expressions for these drag coeffi- B
cients are given in texrms of T, the tangent of the leading-edge

sweep angle, and g—, the ratio of the semispan to the root chord. For
a given value of aspect ratio and taper, the values of T and £

are detormined from the followlng expressions:

= 2012\
A(2+))

()
s (+Na .

ol

RESULTS AND DISCUSSION
Design Charts L -

Because the equations are too long to be very useful for direct
computation of the drag coefficients, detalled calculations have been
undertalken to determine drasg charts based on these equations., Although
the analysis and calculations have been performed for M2= 2, the
drag chaxrts have been generalized, as subsequently discussed, to be
valid for all supersonic Mach numbers. -

A given wing operating at M2>2 or M2<2 may be converted to
an equivalent wing at M2 = 2 by changing 1ts lateral dimensions by

the fac‘t»orJMZ—l and holding the thickness ratio constant. The

effective aspect ratio of the equivalent wing is AJ/MP=I, but its

taper ie the same as that of the given wing. During the lateral

expansicn or contraction the relative positions of the Mach lines .
and. the wing are unchanged, and the presswre coefficients computed

for the equivalent wing at M?=2 will bear a point—to-point
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correspondence with the pressure coefficients for the given wing at
M2>2 or M2<2, However, the pressure ccefficlents and the drag
coefficients for the equivalent wing must be divided by /M1 to
convert them back to the given wing. From these considerations it

follows that plotting CDJMLCL against ANME=I for eny taper
will give a chart which is applicable to all supersonic Mach numbers.

The drag coefflclents, Cp,s CDp» -ch’ CDd_ end. CD° have
all been calculated for M2=2 and then have been added to give Cp,
the wing drag coefficient. Drag charts have then been constructed

to glve -—(%-‘)'La— MBI as a function of AW ME-L, the effective
c

aspect ratio, for various tapers. The drag chart for

0<A/M2-1<1.8 1is given in figure Lk(a) and the drag chart for
1.8€A /M2 1<5.4 1is given in figure 4(b).

An examination of figure L reveals several points of interest.
For any Mach number greater than unity, the drag coefflcient decreases
toward zero as the aspect ratio decreases towerd zero. Also, &s would
be expected the drag coefficients approech the section drag coeffi—

2
clent (/o) as the aspect ratio increases toward Infinity. The
ST
figure also shows that the effect of taper 18 generally greater at
smell effective aspect ratios than at large effective aspect ratios.

Figure 4 also reveals the following informatlon: The curves
of drag-coefficlent parameter as a function of effective aspect
ratio are continuous for all tapers. However, 211l the curves have
discontinuities in slope except the curve for A =1, The
discontinuities in slope occur when the leeding and tralling edges
are coincident with their Mach lines, and correspond to conditions
given by line III of figure 1. Slight decreases in effective agpect
ratios below those for this condition correspond to subsonic leadling
and trailing edges and are accompanied by a rapid decrease in the
drag coefficient, particularly for small tepers. The wing having the
greatest drag coefficient is the wing of zero taper and effective
aspect ratio 2; that is, the wing with the leading edge parallel
to the Mach lines. This wing has a drag coefficlent only about
15 percent greater than the section drag coefficient. Below an
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offective aspect ratio of 1.75, wings of dilamond plen fcem have the
leasat drag; above this effective aspect ratio rectanguler wings have
the least drag.

As an example in the use of these charts to determine the wing
drag coefficlent, consider a wing of aspect ratic 2, taper 0.5, and
of thickness 0.1 (same as semlwedge angle in redizns for thin wings)

flying at M = 1.3. Since A#NMRL = 1,662, figure L4(a) gives
—-?;-2— BT = 4,23, Thus Cp = (0.1)2 (1.204) (4.23) = 0.05L.
C

It can be noted that the drag curve for the dlamond plan-form
wing may be used for wings incorporating a flat lower surface and
an 1isosceles triangular sectlon if the effective aspect ratlo is
greater than two. For such a wing with no tip and supersonic leading
edges, the upper— and lower—surface pressures are Independent so that
the drag [for the wing of isosceles triangular section is Just half
the drag for the wing of the same plan form, the sectlon of which 1ls
a diemond formed by two of the lsosceles trianglea.

Megnitude of Individual Drag Coefficlents for Wings
of Rectanguler and Diesmond Plan Form

The general formulas for the individual drag coefficilents have
been reduced to their particular forms for rectangular wings, and
the results are given in Appendix B, The ratios of the individual
drag coefficlents to thickness ratio squared as Functions of aspect
ratio are given in figure 5(a) for MEa2, The leading-edge sources
produce uniform pressure over both front and reer surfeces and thus
have no comtribution to the drag. The ridge sinks account for a
drag coefricient CDb equal to the section drag coefficlent at

all Mach numbers, which accounts for most of the wing drag.

From figure 5(a) 1t may alsc be seen that, above an aspect
ratio of umity, G:Dd the drag assoclated with the lea.d.ing-—e_d_.ge

image sinle is Just offset by cDe the thrust associsted with the

midchord—Lline imege sources. Thus the tip does not affect the net
wing drag although it does affect the spanwise distribution of the
drag near the tips. Since the tip contrlbutes no drag to the wing
at aspect ratios greater than 1.0, the wing drag coefflcient is
independent of aspect ratios in this range and must be equal to the
gsectlon drag coefficlent.
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For aspect ratios less than 1.0 the tlp affects the wing drag
in a manner such that the drag is reduced because the negative drag
essoclated with the midchord—line image sources more than offsets
the poslitive drag assoclated with the leading-edge image sinks.
When the aspect ratio approaches zero, the thrust of the images is
sufficlent to overcome the drag assoclated with the midchord line,
so that the drag coefficient also approaches zero.

Also in Appendix B the generel formulas for the individual dreg
coefficients have been reduced to their particular form for wings of
diemond plen form. These results have been used as the basis for
figure 5(b) wherein the values of the ratio of the individual drag
coefficlents to the thickness ratio squared have been given as e
function of espect ratio for M=2,

With reference to figure 5(b), it can be seen that for aspect
ratios greater than 2.0 the drag assoclated with the leading-edge
sources is additive to that assoclated with the midchord line to
meke the wing drag coefficlent greater than the section drag coeffi-
cient. For aspect ratlios less than 2.0 the wing drag coefficlent
falls with decreasing aspect ratio as the result of several effects.
First, the trailing edges of the wing are now subsonic and the
positive pressures due to the trailing—edge sources extend onto the
wing rear surfaces and act to decreese the drag. Second, the effect
of the tip is to decrease the drag since the thrust assoclated with
midchord image sources 1s greater than the drag assoclated with the
leading-edge imege sinks. Finally, the drag assoclated with the
leading-edge sources decreases because the sweep of the sources
increases as the aspect ratio becomes smaller.

The tip drag is represented by the difference between the
drag assoclated with the leading-edge image sinks and the midchorde

line image sources. For a recotangular wing with A JE=I>1

the drags identically cancel each other so that the tlp dreg is
zero. This result is also true for other taper ratios as long as
the Mach lines of the images intersect the trailing edge of their
own. half wing. It has also been found in other calculations nod
presented in this report that for tapered and untapered swept wings
with 2 diamond profile and tips cut off in the stream dlrection the
drag of the tip is zero, provided that the tlp of one half wing
does not affect the opposite half wing.

Variation of Drag Coefficient with Mach Number
Using the dreg charts of figure L, the variation with Mach

' 2
number of Cp/ (g) hes been determined for rectangular wings
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of several aspect ratioe and the results are Tresented in figure 6(a).
The results show that for a given Mach number there exlsts a certain
aspect ratio sbove which all rectangular wings have drag coeffi-
cients equal to the section dreg coefficient. Thus all rectangular
wings of aspect ratio greater than unity have the section drag
coefficient at a Mach number greater than l.kl. At Mach numbers

near wnity very low-aspect~ratio wings show some reduction in drag
conpered with wings of higher aspect ratio.

The veriation with Mach nunbexr %/(-E’-)z has also been

determined for wings of diamond plan form of several aspect ratlos,
and the results are presented in figure 6(b). The results show
that considerable drag reductlon is to be realized at Mech .numbers
near unity by reducing the aspect ratio,

CORCLUSIONS

Ths following conclusions may be drawn from 'bhe analysis within
the limits of first-order theory; that is, insofar as the dlsturbance.
velocities are small and the effect of viscosity may be neglscted.

1. Below an effective aspect ratio of 1.75, wings of diamond plean
form have the least drag; above this effective aspect ratio rectangular
wings have the least drag.

2. At very low effective aspect ratios, increasing the ratio
of tip chord to root chord increases the drag cocefficlent markedly,
but at large effective aspect ratios increasing the ratio of tip
chord to root chord slightly decreases the drag coefficilent.

3. Rectangular wings of effective aspect ratio greater than
unity have a drag coefficient equal to the section dreg coeffi-
cient.

4., For wings the tip Mech lines of which intersect the
trailing edges on their own half wing, the tip effect does not
change the net drag but changes only the distribution of the drag.

5. With decreasing effective aspect ratio for & given taper
there is a sudden decrease in dreg coefficlent as the leading and
trailling edges pass through the Mach cones.

6. At low effective aspect ratios the drag coefficient
decreasss with effective aspect ratio.

Ames Aeronautical Laboratory,
Ne.tional Advisory Committee For Aeronautics,
Moffett Fleld, Calif.
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APPENDIX A
DETERMINATTON OF INDIVIIUAL DRAG COEFFICIENTS
Leading—edge Sources

: Considering first the leading-edge sources, figure 3(a) shows
the five areas of the half wing over which thelr pressure flelds
must be integrated to determine the drag coefficient Cpg. Since
there are two half wings and two sides to each half wing, and since
the froht surface is inclined at +t/c radians to the flow and the
reayr surface ls inclined at -t/c radians to the flow

sc],&-ﬂ;];1 Py, <§>dsl+hj;2 Pa<§>as2 +u/;393<§>dsa
;uj;4ra (§>as‘-l:/8‘5pa (-éi)dss (A1)

Consldering both leading-edge sources, the pressure coefficient is
glven by equa.tian (2) as follows:
J

21;
The differential areas taken as small triangles from the apex or as
differences of the triangles are as follows:
o2

)

T—g
1-Ta

+ cosh—l {

1+1'c

dS-gz;da
278

(a3)

_4s__®
2 (o712 8
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Subatituting from equaticns (A2) and (A3) into equation (A1),
putting in the limits shown in figure 3(a), and simplifying
gives the following result: '

+ cosh™t ‘T"“ I ]du
l—ro

t\2 28
2 (32 A T+g
S ¢p. = R.P. cosh™?

o+
- 72_1 l+To

1
T
2
+ 255 |:co£|h"':L I."Ll + cogh™} |T=C_ ]M
c2dg 1l+7g 1-To a®
c
2 p&
- 28 [oosh"" l—ﬁ' + cosh™ |5 ]9'9-
c2 L8 1+70 1-Tg o2
c—8T

- ./:o—:_“[ cosh * E?I + cosh * E‘-‘:“ :l (::w)?_ } (ak)

Carrying out the integration, collecting simllar terms, and making
the following substitution for the wing area S = 2 sc (1-s 7/0)
gives the drag coefficient.
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2
] c
Cp, = R.P. °> (s) {2‘/;2—_:1 sin™! (2s8/c)
z fr 2-1(1-87/c) T
. (1+28 1/c)2 oosh;l[ 28 /o ]_ (1-2s7/c)® oosh—l[ 28 /c ]
T 1+2sT/c T 1-2a7/c
+ {3378 (23 ) ev /o cosh™[ r—s(r2-1) /c]
T(1-72)
+ (1~2s7/c)? cosh™* “T—S(Taﬂ) > ] - 2ler®1) cosh™ 7
T - 1-2st/c T{T2-1)
2 2./ (1~s7/c)2—(s/c)2 ks — /T
+./-r 2. - NEL N T e oosh™ -2_;> } (85)

Midchord-—line Sinks
A simple expression can be derived for the dreg ccefficient
assoclated with the peir of sinks elong the midchord line. From
equation (1) the pressure drop for the flow deflected through an

angle -2 (—g) by the sinks is

Py =~ E_<_'§2- [cos"l(-c) + cos™> (d)] = -} (g) (a6)

Since the pressure ccefficient acts uniformly over the upper and
lower rear surfaces to cause drag,

omy = 4 (2)° 1)
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Trailing—-edge Sources
The sources elong the tralling edges (fig. 3(d)) act always
to decrease the drag as thelr positive pressure field may act only

on the rear surface of the wing. The drag coefficient is given by
the followlng equeation:

S Cp, =—u/;1 Ps Gi)ds_-. (a8)

The pressure coefficlent for one source from equation (2) is

2%
P, = R.P. ——/P— cosh—t |12 (A9)
WL - M=To
and the dlfferentiesl area 1is
ds = 2g%t2 dg (a10)
(1+70)2

Substituting from equations (A9) and (AlO0) into equation (A8),
carrying out the integration, and simplifying gives the drag coeffi-
clent

leading-edge Image Sinks

The lmage sinks associated with the leading-edge sources produce
pressures on the wing which tend to increase the wlng drag. Referring
to figurs 3(b), the drag coefficlent can be written as follows:

. t
= Ps (L )as, - & P<§>ds - P<3'¢>ds
S Cpg +/;1 d<c>1 _/;2(1(; 2 j;sdc 8
— P _t.>ds k4 P <E>ds A11)
+—/:.°>4. d<c * "/E:s A ® (
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The differential areas are given by the following equations:

dS; = do

2.2 2.2
ng=7\° dg _7\c g
2 (1~T0)% 8

c?2 Ao N2 |
8, 2 (1+70)2 8 (

ao cha
2
ds, = 2s .0_2 -5 do
= 2 dg
ds5 28 6—2

The pressure coefficlent can be cobtained by an application of
equation (2).

. (A13)
7 T2 1+7g

Substituting from equations (A12) and (Al3) back into equation (All),
putting in the limits shown in figure 3(b), and simplifying gives
the drag coefficilent.

2
. t
2(2 )c2
3 2 hs - |T+o
S Cp, = R.P. [— A2/ ot cosh © o
W T =1 T
a2p_ 8 T+CO do 8 T+O
+ 27\fc_s-r cosh™1 ; [ —_t 2];,:%5? cosh™ do
o l+1a! (l—79) s l4+7o C|_+'rcr\2
C=3T
48 1
2 2
+ 8% c—28T cosh—2 |T¥9 | do _ gs_f cosh™1 (T""’ ) do ]
c 28 1+70|l 02 c2 1+70/ g2
c—28T c-287T

(a1k)
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Carrying out the integration, collecting similar terms, and
substituting S = 2sc(l-st/c) gives the drag coefficient.

o gy (- e 2

o (-287/0)® et i

cosh™ 7
T T 1-287/c

- _Usfc  (1-2at/c)®
T

4 [(E3r2-1)+is1(1—2) /o]

—=y cosh™2 [r-8 (v2-1) /o]

(1.--25 1/c)2 cosh1 [1'-—5 (t2+1) /o ]

1l-2ast/c

2['1—14.5 (12-1) /e ] cosh? [r —28(12-1) /o] + 2 J(JFEBT/G)Z—(QB/C)Z

2~1) STl

- 2N (1-sT/c)2—(s/c)2 165 oy _3 (1-est/e
fr?__i- 1-2 1l cosh 1—575—

- 827 comn™ (7.%2&) } (a15)
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Midchord-line Image Sources
The image sources associated with the midchord-line produce positive

Tressures on the rear surfaces of the wing and tend to reduce the drag.
Referring to figure 3(c), the drag coefficient can be written as follows:

SCDe=—hjs:lPe<§>d$1-h/;2Pe<§>652-l|-fssP,<§)dss (a16)

The differential areas can be written as follows:

- A2c2 do
8 (Amro)2

dSy

do

c2
asp = & (1+28T/c)? —_(1m)2 (a17)
) d.Sa = 252 i—:—

The pressure coefficient mey be obtained by an application of egquation (1).

P = hz 2 cos™ (o) | (a28)

Substituting from equations (Al7) and (A18) into equation (A16), putting in
the limits shown in figure 3(c), and simplifying gives the drag coeffi-
cient.

f_{%_):c’i[ }\i%‘cos_l (c) —92_
X

= — R.P,
S (.'1])° R (1-10)2

48

2 p1
+ (1+2871/c)? ©-28Y o051 (o) 4o 165f 48 cos * (o) %]
ry (1+70)2  oB Voot o

(a19)
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Carrying out the integration, collecting similar terms, and meking the

substitution, S = 2sc(l-eT1/c), glves the drag coefficient.

R.P <&> <) { cos=t (28/o)

©De ’ :t(l,-s'r/c)

_ 2(1-2s70)2 | (1~287/c)2 cOBh-l[ Tesfe ]

2T TS 1-28T/c

_ (14—281'40)2 cosh=l T — (1-2s7/c)2 cos‘l[ ks/c ]
T /ran]

T 1-2aT/c

2
+ (322870 soen— [-:?AL—)-L@." 22 ]
Ty T <=1 1+2s 'r/c

- EM cosh—1 T+2s/c )_ 162 cosh—1 [_l_._QQ'_T/_c. ] } (A20)

ks /o

raf 2.1 +28 7/c c2
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APPENDIX B

REDUCTION (F GENERAL BEQUATIONS FOR WINGS OF
RECTANGULAR AND DIAMOND PIAN FORM

The general formulas for the individusel drag coefficlent cen be
considerably simplified for wings of rectangular or dlamond plan form,
For the rectanguler plan form the formulas are simplified by determin—
ing the limiting values of the drag coefficlents as T, the tangent
of the leadling—edge sweepback angle, approaches zero since the formulas
are indeterminate for T= 0, The actual limiting process is lengthy
and only the results are given here,

CDa=0

2
Cpp, = & <‘§>

=0

2
Cpg = R.F. @,@— {8 -s cos™1 -235- - 2[1:6;%)—2? 1

- 85 cour (5 /AT + 2 com (12 58 cor™ (3

a2

(B1)

2 : '
CDg = R.P. — <§> <§> [l + -80—3 cos™1 (-l‘—:) ~1-(4s/c)2 — LS—SE cosh~t (fg)]

n

Summing the component drag coefficients end making the substitution
A= Qs/c gives the wing drag coefficlent in terms of the aspect :a.tio.
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2 &/ )
CD = R.P, 4 (é"-) [1 —%( Jf‘— + A cosh % -2 coe’l_A>

_1 _i‘l—hAa_ -1_]:_ —-1 \]
- ( n 4A cosh = + 4 cos gA/ (B2)

Inspection of equation (B2) shows that the first term is real for all
aspect ratios, that the next three terms are real only for aspect ratios
less than unity, and that the last three terms are real only for aspect
ratlos less than one-half.

Tn simplifying the general formulas for wings of diamond plan form
1t is sufficient to substitute the condition for zero taper T = c/2s,
gsince the formulass are doterminate for this case. The followlng results

have been obtained.

2
&
Cp, = R.P.h.gq.;__{_(&l_l'- cosh™t T — cosh~1< 72+1> :|
T J-r 1 -

7(1~T2) 27

+

Eﬁzi,m—1<l)+ 2 -l}-
T SRR

4 @)2 (33)

CDb =
(Y
5 (5
Cp, = R.P.- < cosh™ T2+l>
L Y, Ta2_3 ar
) (j
= 241 T +l>_ }
ch. { cosh < Y 1
i -
-8 \3>
CDe = R,P. _.._o_.-{cos"l (:r]:>-— co sh—t 12+l> }
ﬂ .
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Summing the component drag coefficlents and meking the substitution
A = 2/+ gives the following formula for the drag coefficient of a
diamond plen—form wing: .

Cp =31>.8<>2 {T.===..1+_ Hasm4@>

/- /
+‘\ %) [2 cosh™ \)'T;: /= cosh™ <A\ ] } (B4)

When the leading edges of the wing are swept behind the Mach cone,
T>1 and A<?2 so that all terms of equations (B3) and (Bl) are real.
However, for leading edges in front of the Mach cone where 7 <1l and
A>2, wuse must be made of the following relationshlip to 1{ind the real
part of equations (B3) and (Bh4):

~—1 -l
cos x _ cosh’ x (B5)

Vi.r2 Nr2_3

The resulting equations for the component drag coefficients and wing
drag coefficient are as follows:

e “T< ) [n Jir2 _ 2 _e2(@-er3) T_} \,
& A 11" T 112 T(1~18) g
Opy, = 4 (3\2 ;38
i
Cb, = Opy = CDg = O ;
J
16 (22 -
R O =S SN = 2) ] 1)
°p x & a2l [.2 el 2@rl) " A
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